The final lab sessions of this term, that form the core of the UTC’s skills passport, involves the technique called simply, PCR: the Polymerase Chain Reaction. It is arguably the most important laboratory method to come out of Molecular Biology apart from nucleotide sequencing, although I am sure some would disagree! Nevertheless, since the concept was proposed by the distinguished Biochemist, Arthur Kornberg and subsequently developed into the practical technique we know today by Kary Mullis, it has become invaluable not only to Life Science Researchers, but to the Police, Medics, Archaeologists, Historians and Lawyers! Before I discuss the methodology in detail, there are several generic principles that underpin the PCR method, and the technique of PCR provides me with an opportunity to discuss them. The first is the phenomenon that is perhaps best described in large scale data analysis using computational methods: "garbage in garbage out", a phrase attributed in more eloquent form to the computational pioneer Charles Babbage:
On
two occasions I have been asked, "Pray, Mr. Babbage, if you put into
the machine wrong figures, will the right answers come out?" ... I am
not able rightly to apprehend the kind of confusion of ideas that could
provoke such a question.
If part of your business is the sale of DNA purification kits, then you will not only sell on price, but on the simplicity, efficiency and reproducibility of your particular kit in producing samples fit for purpose in the downstream process. In most research labs, a method is often developed by an individual, which may subsequently becomes a key part of that particular laboratory's repertoire (often for several years). This process of method development and dissemination to the wider scientific community has been a pillar of experimental science in Universities and Research Institutes for many years (this is reflected in the many journals and books dedicated to experimental methodology). However, in our high-throughput, data-hungry world, the importance of personal experimental failure and improvement in the laboratory, has largely been sacrificed in the oncoming juggernaut which is our thirst for answers. Clearly, the current search for an effective Ebola vaccine, in the same way that Jonas Salk raced to deliver his polio vaccine, against a background of escalating human tragedy, focuses the mind in an important way. In many ways, the two competing forces: delivery of solutions and the provision of high quality scientific training are complementary: a good scientist knows when to slow down and take care at the bench, and when to buy an off the peg solution to move a project along. What I would advocate is that greater importance is placed on teaching robust sample preparation methods, as a means of mitigating some of the trouble-shooting shortcomings of many young scientists, in order that they are capable of making informed decisions in their work. The quality and quantity of the input sample in PCR (usually referred to as the "template" is critical for success.
The objective of (the) PCR is to amplify a specific sequence or set of sequences from a vanishingly small sample of DNA (it could be a research sample or a scene of crime swab). The products of this amplification are called amplicons, and the sample of DNA is referred to as the template. The components of PCRs are pretty logical: a DNA Polymerase enzyme to replicate the DNA, a mixture of dATP, dGTP, dCTP and dTTP (collectively called dNTPs); the building blocks of DNA. All polymerases usually require magnesium ions and a suitable buffer. The missing ingredients are the "primers". These are short (usually between 18-50 nucleotides in length) sequences of DNA; they must be complementary to the ends of the amplicon, following the standard Watson-Crick base pairing rules (A pairs with T and G with C). It is important to appreciate that the two strands of the double helix are anti-parallel. This is illustrated in the top RHS figure. We refer to the direction of the strand as 5'-3' (spoken 5-prime to 3-prime), this is reflected in the orientation of the sugar phosphates that form the backbone of the DNA molecule.
The key to amplification lies in a series of repeated denaturation steps, or cycles during which the Watson-Crick base pairs are "broken", allowing the primers to find their complementary sites. Denaturation is achieved by heating the reaction; the primers (which are in considerable excess over the template DNA) then anneal to form the substrate binding site for the polymerase enzyme. The dNTPs are then incorporated as the polymerase copies each strand in the 5'-3' direction. DNA replication proceeds only in one direction, each double helix that is copied is analogous to two railway lines (say from Liverpool to London): just as the train keeps to one set of tracks, so to do the DNA polymerase molecules. During replication in vivo, this unidirectionality causes topological challenges for the genome in the cell, but this will be the subject of another post.
